If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=80t-t^2
We move all terms to the left:
0-(80t-t^2)=0
We add all the numbers together, and all the variables
-(80t-t^2)=0
We get rid of parentheses
t^2-80t=0
a = 1; b = -80; c = 0;
Δ = b2-4ac
Δ = -802-4·1·0
Δ = 6400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{6400}=80$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-80)-80}{2*1}=\frac{0}{2} =0 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-80)+80}{2*1}=\frac{160}{2} =80 $
| 8x+14x=21 | | 6m+15=4m | | 8x+14x=204 | | 5x+14=-5x+14 | | j+12=15 | | 1.55=(.02-x)/x | | 4+7y=14 | | 3k^2+10k-57=0 | | 6(10-4x)=204 | | 7(2x-8)=-28 | | Y=3x-24x=-12 | | -6(-2x+4)=48 | | -4x-3=(-6x)+9 | | (2x^2)+4=22 | | 4(3y+1)-3(2y-5)=29 | | 2(-1+7x)=124 | | 5c-2(c+1)=4 | | -4-4x=2x+68 | | 5-7x/2=1+x | | 3u2–3u+1=0 | | -2x+9=6x-63 | | 9u2+7u+1=0 | | -2x+9=2x+12 | | 5+y=90 | | 12y=3(y-5) | | 9+x=2x+12 | | 2z+5=-13 | | 18+2p=8p-14 | | 20x+5=30x | | -8+3x=-7x+72 | | 4x-7=-2x+7 | | -8+3x=-7+72 |